Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian National ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Medical Imaging and Radiation Sciences
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Arterial Spin Labeling Techniques 2009–2014

Authors: Wai Harn E. Wong; Jerome J. Maller;

Arterial Spin Labeling Techniques 2009–2014

Abstract

Arterial spin labeling (ASL) techniques have been implemented across a diverse range of clinical and experimental applications. This review aims to evaluate the current feasibility of ASL in clinical neuroradiology based on recent improvements to ASL sequences and highlight areas for potential clinical applications.In December 2014, a literature search was conducted on PubMed Central, EMBASE, and Scopus using the search terms: "arterial spin labeling, neuroradiology," for studies published between 2009 and 2014 (inclusive). Of 483 studies matching the inclusion criteria, the number of studies using continuous, pseudocontinuous, pulsed, and velocity-selective ASL sequences was 42, 209, 226, and 3, respectively. Studies were classified based on several common clinical applications according to the type of ASL sequence used. Studies using pulsed ASL and pseudo-continuous ASL were grouped based on common sequences.The number of clinical studies was 264. Numerous studies applied ASL to stroke management (43 studies), drug testing (21 studies), neurodegenerative diseases (40 studies), and psychiatric disorders (26 studies).This review discusses several factors hindering the implementation of clinical ASL and ASL-related radiofrequency safety issues encountered in clinical practice. However, a limited number of search terms were used. Further development of robust sequences with multislice imaging capabilities and reduced radiofrequency energy deposition will hopefully improve the clinical acceptance of ASL.

Country
Australia
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Green