
pmid: 29959924
Over the past 50 years, protein complexes have been studied with techniques such as X-ray crystallography and electron microscopy, generating images which although detailed are static and homogeneous. More recently, limited application of in vivo fluorescence and other techniques has revealed that many complexes previously thought stable and compositionally uniform are dynamically variable, continually exchanging components with a freely circulating pool of "spares." Here, we consider the purpose and prevalence of protein exchange, first reviewing the ongoing story of exchange in the bacterial flagella motor, before surveying reports of exchange in complexes across all domains of life, together highlighting great diversity in timescales and functions. Finally, we put this in the context of high-throughput proteomic studies which hint that exchange might be the norm, rather than an exception.
Proteomics, Bacteria, Bacterial Proteins, Flagella, Molecular Motor Proteins, Fluorescence
Proteomics, Bacteria, Bacterial Proteins, Flagella, Molecular Motor Proteins, Fluorescence
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
