
pmid: 25728652
Circular RNAs are found in a wide range of organisms and it has been proposed that they perform disparate functions. However, how RNA circularization is connected to alternative splicing remains largely unexplored. Here, we stimulated primary human endothelial cells with tumor necrosis factor α or tumor growth factor β, purified RNA, generated >2.4 billion RNA-seq reads, and used a custom pipeline to characterize circular RNAs derived from coding exons. We find that circularization of exons is widespread and correlates with exon skipping, a feature that adds considerably to the regulatory complexity of the human transcriptome.
Alternative Splicing, Transforming Growth Factor beta, Tumor Necrosis Factor-alpha, RNA Splicing, Human Umbilical Vein Endothelial Cells, Humans, RNA, Exons, RNA, Circular, Cells, Cultured
Alternative Splicing, Transforming Growth Factor beta, Tumor Necrosis Factor-alpha, RNA Splicing, Human Umbilical Vein Endothelial Cells, Humans, RNA, Exons, RNA, Circular, Cells, Cultured
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 331 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
