
pmid: 20452360
The pentameric ATPase motor gp16 packages double-stranded DNA into the bacteriophage phi29 virus capsid. On the basis of the results of single-molecule experimental studies, we propose a push and roll mechanism to explain how the packaging motor translocates the DNA in bursts of four 2.5 bp power strokes, while rotating the DNA. In this mechanism, each power stroke accompanies P(i) release after ATP hydrolysis. Since the high-resolution structure of the gp16 motor is not available, we borrowed characterized features from the P4 RNA packaging motor in bacteriophage phi12. For each power stroke, a lumenal lever from a single subunit is electrostatically steered to the DNA backbone. The lever then pushes sterically, orthogonal to the backbone axis, such that the right-handed DNA helix is translocated and rotated in a left-handed direction. The electrostatic association allows tight coupling between the lever and the DNA and prevents DNA from slipping back. The lever affinity for DNA decreases towards the end of the power stroke and the DNA rolls to the lever on the next subunit. Each power stroke facilitates ATP hydrolysis in the next catalytic site by inserting an Arg -finger into the site, as captured in phi12-P4. At the end of every four power strokes, ADP release happens slowly, so the cycle pauses constituting a dwell phase during which four ATPs are loaded into the catalytic sites. The next burst phase of four power strokes starts once spontaneous ATP hydrolysis takes place in the fifth site without insertion of an Arg finger. The push and roll model provides a new perspective on how a multimeric ATPase transports DNA, and it might apply to other ring motors as well.
Adenosine Triphosphatases, Models, Molecular, Stochastic Processes, Optical Tweezers, Protein Conformation, Static Electricity, Viral Proteins, DNA Packaging, DNA, Viral, Nucleic Acid Conformation, Bacteriophages, Stress, Mechanical
Adenosine Triphosphatases, Models, Molecular, Stochastic Processes, Optical Tweezers, Protein Conformation, Static Electricity, Viral Proteins, DNA Packaging, DNA, Viral, Nucleic Acid Conformation, Bacteriophages, Stress, Mechanical
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 73 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
