Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Materials...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Materials Processing Technology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Warm forming simulation of Al–Mg sheet

Authors: Kurukuri, S.; van den Boogaard, A.H.; Miroux, A.; Holmedal, B.;

Warm forming simulation of Al–Mg sheet

Abstract

The accuracy of warm forming simulations depends to a large extend on the description of the yield surface with temperature and strain-rate dependent hardening and on the modeling of friction. In this paper, the anisotropic behavior of the sheet is described by using the Vegter yield locus, which is purely based on experimental measurements. For work hardening, the dislocation based Nes model is used, in which the evolution of microstructure is defined by three internal state variables. The model incorporates the influence of the temperature and strain rate effect on the flow stress by means of the storage and dynamic recovery of dislocations. It is demonstrated that the Nes model is able to describe the flow stress of Al–Mg alloys up to 250 ° C at different strain rates. It also represents the negative strain rate sensitivity behavior of Al–Mg alloys at temperatures below 125 °C. The simulation of uniaxial tensile tests shows that the model is able to predict the strain localization. Cylindrical cup deep drawing simulations are presented using shell elements. Data from experimental deep drawing tests is used to validate the modeling approach, where the model parameters are determined from tensile tests.

Country
Netherlands
Keywords

Nes model, 2024 OA procedure, Work hardening, Material model, Vegter yield function, Warm forming, Aluminum

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
hybrid