Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidade Estadua...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Dentistry
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evaluation of dentin desensitization protocols on the dentinal surface and their effects on the dentin bond interface

Authors: Wilfredo Gustavo Escalante-Otárola; Gabriela Mariana Castro-Núñez; Keren Cristina Fagundes Jordão-Basso; Bruno Martini Guimarães; Regina Guenka Palma-Dibb; Milton Carlos Kuga;

Evaluation of dentin desensitization protocols on the dentinal surface and their effects on the dentin bond interface

Abstract

To evaluate the effect of desensitizing agent containing calcium phosphate nanoparticles on the bond strength of etch-and-rinse adhesive system (Scotchbond Multi-Purpose), presence of precipitate, dentinal tubule obliteration and hybrid layer formation in dentin in comparison with potassium nitrate plus sodium fluoride or strontium chloride compounds.150 bovine incisors were treated with (n = 10): G1, Desensibilize Nano P (Ca3(PO4)2+5%KNO3+0.9%NaF); G2, Desensibilize (10%SrCl2+5%KNO3); G3, Desensibilize KF2% (5%KNO3+0.2%NaF); G4, Ultra EZ (3%KNO3+0.25%NaF) and G5, no treated (control). Scanning electron microscopy was used to assess the incidence of precipitates (500×) and obliterated dentinal tubule counts (1.000×). The adhesive system was used after all desensitization treatments. The bond strength (n = 40) and the fracture pattern were evaluated. Confocal laser microscopy was used to quantify the hybrid layer formation in dentin.G1 and G2 presented higher adhesive system bond strength (MPa) than G4 and G5, however no significant differences were observed in comparison with G3. Cohesive fracture was frequently found: G1 (58.5%), G2 (51.3%) and G3 (43.8%). G1 showed the highest incidence of precipitates and the highest number of blocked dentinal tubules. G1 and G2 presented similar hybrid layer formation and the highest hybrid layer formation values.Desensibilize Nano P (G1) favored the bond strength of the adhesive system to dentin, increased the precipitation of residues, obliteration of dentinal tubules, and hybrid layer formation in comparison with other agents.Desensitizers promote dentin obliteration, however, may affect dentin bonding.

Keywords

Bond strength, Dental Bonding, Hybrid layer, Composite Resins, Resin Cements, Acid Etching, Dental, 669, Dentin-Bonding Agents, Tensile Strength, Dentin, Materials Testing, Microscopy, Electron, Scanning, Animals, Cattle, Dentin adhesive, Scanning electron microscopy, Dentin hypersensitivity, Desensitizing agents

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%
Green
bronze