Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Dentistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Dentistry
Article . 2008 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2008
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flexural strength of veneering ceramics for zirconia

Authors: Fischer, J; Stawarczyk, B; Hämmerle, C H F;

Flexural strength of veneering ceramics for zirconia

Abstract

The flexural strengths of veneering ceramics for zirconia were compared.With 10 different veneering ceramics for zirconia (test group) and three different veneering ceramics for the metal-ceramic technique (control group) three-point flexural strength and biaxial flexural strength according to ISO 6872: 1995 as well as four-point flexural strength according to EN 843-1: 2005 were measured (n=10). Statistical analysis was performed with one-way ANOVA and post hoc Scheffé test (SPSS, p<0.05).For the test group, three-point flexural strength ranged between 77.8+/-8.7 and 106.6+/-12.5MPa without any statistically significant differences, biaxial flexural strength between 69.1+/-4.8 and 101.4+/-10.5MPa with three homogeneous groups and four-point flexural strength between 59.5+/-6.2 and 89.2+/-9.5MPa with five homogeneous groups. The control group showed three-point flexural strength values ranging from 93.3+/-13.5 to 149.4+/-20.5MPa, biaxial flexural strength values from 93.4+/-10.0 to 141.2+/-11.6MPa, and four-point flexural strength values from 82.7+/-8.5 to 116.9+/-9.8MPa. In every case, the results of the four-point flexure test were significantly lower than those obtained in the three-point flexure test. The three-point flexural strengths of the test group are similar to those of two ceramics of the control group. The flexural strength of one ceramic of the control group significantly exceeded the strengths of all other ceramics investigated.Three-point flexural strength values of veneering ceramics for zirconia are similar to those of veneering ceramics for the metal-ceramic technique. The four-point flexure test among all three tests showed highest discrimination between the different ceramic materials.

Keywords

Hot Temperature, Time Factors, Metal Ceramic Alloys, 610 Medicine & health, 3500 General Dentistry, Dental Porcelain, 10068 Clinic of Reconstructive Dentistry, Dental Materials, Dental Veneers, Materials Testing, Humans, Stress, Mechanical, Zirconium, Pliability

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    139
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
139
Top 10%
Top 1%
Top 10%
Green
bronze