
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The treewidth of a graph is an important invariant in structural and algorithmic graph theory. This paper studies the treewidth of line graphs. We show that determining the treewidth of the line graph of a graph $G$ is equivalent to determining the minimum vertex congestion of an embedding of $G$ into a tree. Using this result, we prove sharp lower bounds in terms of both the minimum degree and average degree of $G$. These results are precise enough to exactly determine the treewidth of the line graph of a complete graph and other interesting examples. We also improve the best known upper bound on the treewidth of a line graph. Analogous results are proved for pathwidth.
18 pages (including appendices)
05C75 (Primary), 05C76 (Secondary), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
05C75 (Primary), 05C76 (Secondary), FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
