Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ JACC Cardiovascular ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JACC Cardiovascular Imaging
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
JACC Cardiovascular Imaging
Article . 2009
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
JACC Cardiovascular Imaging
Article . 2009 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Arterial Remodeling in the Subclinical Carotid Artery Disease

Authors: Vasily L. Yarnykh; Thomas S. Hatsukami; Baocheng Chu; Nayak L. Polissar; Minako Oikawa; Stephen M. Schwartz; Chun Yuan; +2 Authors

Arterial Remodeling in the Subclinical Carotid Artery Disease

Abstract

ObjectivesWe sought to identify clinical and/or plaque characteristics that affect atherosclerotic disease progression and arterial remodeling in the carotid artery with subclinical stenosis.BackgroundIncreasing severity of stenosis has been associated with a higher risk of stroke. Factors that drive subclinical lesions to become stenotic plaques remain ambiguous. Carotid magnetic resonance imaging (MRI) has been validated with histology to accurately quantify in vivo arterial morphology and plaque composition.MethodsA total of 67 asymptomatic participants with 16% to 49% carotid stenosis as demonstrated by duplex ultrasonography were imaged at 1.5-T with a carotid MRI protocol at baseline and at 18-month follow-up. Clinical and/or intra-arterial metrics with a significant association with change in plaque burden during multivariate analysis were evaluated for effects on lumen, wall, and total vessel volume.ResultsFrom multiple regression analysis, intraplaque hemorrhage (IPH) (p < 0.001) and statin therapy (p = 0.015) were identified as key determinants of change in plaque burden. The group with IPH compared with the group without IPH demonstrated luminal narrowing, with a mean ± SD decrease in lumen volume (−24.9 ± 21.1 mm3/year vs. −0.5 ± 26.9 mm3/year; p = 0.005), a larger increase in wall volume (44.1 ± 36.1 mm3/year vs. 0.8 ± 34.5 mm3/year; p < 0.001), and no difference in total vessel volume (19.3 ± 27.4 mm3/year vs. 0.4 ± 42.4 mm3/year; p = 0.15). The nonstatin group compared with the statin group demonstrated outward remodeling, with an increase in wall volume (22.4 ± 35.6 mm3/year3/year vs. 0.9 ± 38.0 mm3/year; p = 0.026) and total vessel volume (19.2 ± 36.9 mm3/year vs. −4.9 ± 40.4 mm3/year; p = 0.019) and no difference in lumen volume (−5.8 ± 26.6 mm3/year vs. −3.2 ± 29.5 mm3/year; p = 0.72).ConclusionsIPH may represent an indication of accelerated plaque growth and impending luminal compromise in the subclinical carotid artery. Statin therapy may stabilize lesions by slowing or halting lesion progression. This phase of plaque stenosis (16% to 49%) may be a critical stage for intrinsic and extrinsic factors to affect the atherosclerotic disease process.

Related Organizations
Keywords

carotid arteries, Radiology Nuclear Medicine and imaging, magnetic resonance imaging, atherosclerosis, Cardiology and Cardiovascular Medicine, remodeling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    81
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
81
Top 10%
Top 10%
Top 10%
hybrid