Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Clinical ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Clinical Anesthesia
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Predicting postoperative delirium after microvascular decompression surgery with machine learning

Authors: Lei Lei; Mu-huo Ji; Jian-Jun Yang; Jianhua Tong; Cheng-Mao Zhou; Ying Wang;

Predicting postoperative delirium after microvascular decompression surgery with machine learning

Abstract

The aim of this study was to predict early delirium after microvascular decompression using machine learning.Retrospective cohort study.Second Hospital of Lanzhou University.This study involved 912 patients with primary cranial nerve disease who had undergone microvascular decompression surgery between July 2007 and June 2018.None.We collected data on preoperative, intraoperative, and postoperative variables. Statistical analysis was conducted in R, and the model was constructed with python. The machine learning model was run using the following models: decision tree, logistic regression, random forest, gbm, and GBDT models.912 patients were enrolled in this study, 221 of which (24.2%) had postoperative delirium. The machine learning Gbm algorithm finds that the first five factors accounting for the weight of postoperative delirium are CBZ use duration, hgb, serum CBZ level measured 24 h before surgery, preoperative CBZ dose, and BUN. Through machine learning five algorithms to build prediction models, we found the following values for the training group: Logistic algorithm (AUC value = 0.925, accuracy = 0.900); Forest algorithm (AUC value = 0.994, accuracy = 0.948); GradientBoosting algorithm (AUC value = 0.994, accuracy = 0.970) and DecisionTree algorithm (aucvalue = 0.902, accuracy = 0.861); Gbm algorithm (AUC value = 0.979, accuracy = 0.944). The test group had the following values: Logistic algorithm (aucvalue = 0.920, accuracy = 0.901); DecisionTree algorithm (aucvalue = 0.888, accuracy = 0.883); Forest algorithm (aucvalue = 0.963, accuracy = 0.909); GradientBoostingc algorithm (aucvalue = 0.962, accuracy = 0.923); Gbm algorithm (AUC value = 0.956, accuracy = 0.920).Machine learning algorithms predict the occurrence of delirium after microvascular decompression with an accuracy rate of 96.7%. And the major risk factors for the development of post-cardiac delirium are carbamazepine, hgb, and BUN.

Related Organizations
Keywords

Machine Learning, Logistic Models, Delirium, Humans, Algorithms, Microvascular Decompression Surgery, Retrospective Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!