Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Colloid a...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Colloid and Interface Science
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Colloid and Interface Science
Article . 2016
License: CC BY NC ND
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Colloid and Interface Science
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Young’s modulus of nanoconfined liquids?

Authors: Peter M. Hoffmann; Shah Haidar Khan;

Young’s modulus of nanoconfined liquids?

Abstract

In material science, bioengineering, and biology, thin liquid films and soft matter membranes play an important role in micro-lubrication, ion transport, and fundamental biological processes. Various attempts have been made to characterize the elastic properties, such as Young's modulus, of such films using Hertz theory by incorporating convoluted mathematical corrections. We propose a simple way to extract tip-size independent elastic properties based on stiffness and force measurement through a spherical tip on a flat surface. Using our model, the Young's modulus of nanoconfined, molecularly-thin, layers of a model liquid TEHOS (tetrakis 2-ethylhexoxy silane) and water were determined using a small-amplitude AFM. This AFM can simultaneously measure the stiffness and forces of nanoscale films. While the stiffness scales linearly with the tip radius, the measured Young's modulus essentially remains constant over an order of magnitude variation in the tip radius. The values obtained for the elastic modulus of TEHOS and water films on the basis of our method are significantly lower than the confining surfaces' elastic moduli, in contrast with the uncorrected Hertz model, suggesting that our method can serve as a simple way to compare elastic properties of nanoscale thin films as well as to characterize a variety of soft films. In addition, our results show that the elastic properties (elastic modulus) of nanoconfined liquid films remain fairly independent of increasing confinement.

Related Organizations
Keywords

Biomaterials, Colloid and Surface Chemistry, Surface Properties, Elastic Modulus, Water, Silanes, Microscopy, Atomic Force, Electronic, Optical and Magnetic Materials, Surfaces, Coatings and Films

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid