Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Biotechno...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biotechnology
Article . 2006 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Modeling and simulation of Streptomyces peucetius var. caesius N47 cultivation and ɛ-rhodomycinone production with kinetic equations and neural networks

Authors: Kristiina, Kiviharju; Kalle, Salonen; Matti, Leisola; Tero, Eerikäinen;

Modeling and simulation of Streptomyces peucetius var. caesius N47 cultivation and ɛ-rhodomycinone production with kinetic equations and neural networks

Abstract

This study focuses on comparing different kinetic growth models and the use of neural networks in the batch cultivation of Streptomyces peucetius var. caesius producing epsilon-rhodomycinone. Contois, Monod and Teissier microbial growth models were used as well as the logistic growth modeling approach, which was found best in the simulations of growth and glucose consumption in the batch growth phase. The lag phase was included in the kinetic model with a CO2 trigger and a delay factor. Substrate consumption and product formation were included as Luedeking-Piret and logistic type equations, respectively. Biomass formation was modeled successfully with a 6-8-2 network, and the network was capable of biomass prediction with an R2-value of 0.983. Epsilon-rhodomycinone production was successfully modeled with a recursive 8-3-1 network capable of epsilon-rhodomycinone prediction with an R2-value of 0.903. The predictive power of the neural networks was superior to the kinetic models, which could not be used in predictive modeling of arbitrary batch cultivations.

Keywords

Kinetics, Bioreactors, Cell Culture Techniques, Anthracyclines, Computer Simulation, Neural Networks, Computer, Models, Biological, Streptomyces, Cell Proliferation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!