<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this study, we tested two assumptions that have been made in experimental studies on muscle mechanics: (i) that the torque-angle properties are similar among agonistic muscles crossing a joint, and (ii) that the sum of the torque capacity of individual muscles adds up to the torque capacity of the agonist group.
Electromyography, muscle, force-length relationship, Biomechanical Phenomena, Quadriceps Muscle, torque-angle relationship, Torque, intramuscular pressure, Isometric Contraction, Animals, Female, Joints, Rabbits
Electromyography, muscle, force-length relationship, Biomechanical Phenomena, Quadriceps Muscle, torque-angle relationship, Torque, intramuscular pressure, Isometric Contraction, Animals, Female, Joints, Rabbits
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |