
pmid: 29111203
Dentin is a biocomposite possessing elegant hierarchical structure, which allows it to resist fracture effectively. Despite the considerable efforts to unravel the peculiar fracture behavior of dentin, the effect of microstructural features on the fracture process is largely unknown. In this study, we explore the interaction between the primary crack with crack tip located in intertubular dentin (ITD) and microcracking of peritubular dentin (PTD) ahead of the primary crack. A micromechanical model accounting for the unique composite structure of dentin is developed, and computational simulations are performed. It is found that the microcracking of PTD located in the crack plane in front of the primary crack tip can promote the propagation of the primary crack, increasing the propensity of coalescence of primary crack and microcracks nucleating in PTD. We show that the two-layer microstructure of dentin enables reduction in driving force of primary crack, potentially enhancing fracture toughness. The high stiffness of PTD plays a critical role in reducing the driving force of primary crack and activating microcracking of PTD. It is further identified that the microcracking of PTD arranged parallel to the crack plane with an offset could contribute to the shielding of primary crack.
Tooth Fractures, Elastic Modulus, Dentin, Humans, Computer Simulation, Models, Biological, Tooth
Tooth Fractures, Elastic Modulus, Dentin, Humans, Computer Simulation, Models, Biological, Tooth
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
