Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Biomechan...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Biomechanics
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Global biomechanical model for dental implants

Authors: Ingela Mattisson; Stig Hansson; Elisabet Ahlberg; Johanna Löberg; Johanna Löberg;

Global biomechanical model for dental implants

Abstract

The osseointegration of titanium dental implants is a complex process and there is a need for systematization of the factors influencing anchoring of implant. A common way of analyzing the strength of the fixation in bone is by measuring the torque required to remove the implants after healing. In this paper, a global biomechanical model is introduced and derived for removal torque situations. In this model, a gap is allowed to form between the bone and the implant and the size of the gap at fracture is a function of the surface roughness and can be shown to be directly related to the mean slope of the surface. The interfacial shear strength increases almost linearly with the mean slope and was also found to increase with an increase in the 2D surface roughness parameter, R(a). Besides the surface roughness, the design of the implant, the bone anatomy and the bone quality were shown to influence the interfacial shear strength. The Global biomechanical model can be used as a tool for optimizing the implant design and the surface topography to obtain high anchoring strength.

Related Organizations
Keywords

Dental Implants, Dental Prosthesis Design, Humans, Models, Biological, Biomechanical Phenomena

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
25
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!