Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biomedica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biomedical Informatics
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Valley-Forecast: Forecasting Coccidioidomycosis incidence via enhanced LSTM models trained on comprehensive meteorological data

Authors: Leif Huender; Mary Everett; John Shovic;

Valley-Forecast: Forecasting Coccidioidomycosis incidence via enhanced LSTM models trained on comprehensive meteorological data

Abstract

Coccidioidomycosis (cocci), or more commonly known as Valley Fever, is a fungal infection caused by Coccidioides species that poses a significant public health challenge, particularly in the semi-arid regions of the Americas, with notable prevalence in California and Arizona. Previous epidemiological studies have established a correlation between cocci incidence and regional weather patterns, indicating that climatic factors influence the fungus's life cycle and subsequent disease transmission. This study hypothesizes that Long Short-Term Memory (LSTM) and extended Long Short-Term Memory (xLSTM) models, known for their ability to capture long-term dependencies in time-series data, can outperform traditional statistical methods in predicting cocci outbreak cases. Our research analyzed daily meteorological features from 2001 to 2022 across 48 counties in California, covering diverse microclimates and cocci incidence. The study evaluated 846 LSTM models and 176 xLSTM models with various fine-tuning metrics. To ensure the reliability of our results, these advanced neural network architectures are cross analyzed with Baseline Regression and Multi-Layer Perceptron (MLP) models, providing a comprehensive comparative framework. We found that LSTM-type architectures outperform traditional methods, with xLSTM achieving the lowest test RMSE of 282.98 (95% CI: 259.2-306.8) compared to the baseline's 468.51 (95% CI: 458.2-478.8), demonstrating a reduction of 39.60% in prediction error. While both LSTM (283.50, 95% CI: 259.7-307.3) and MLP (293.14, 95% CI: 268.3-318.0) also showed substantial improvements over the baseline, the overlapping confidence intervals suggest similar predictive capabilities among the advanced models. This improvement in predictive capability suggests a strong correlation between temporal microclimatic variations and regional cocci incidences. The increased predictive power of these models has significant public health implications, potentially informing strategies for cocci outbreak prevention and control. Moreover, this study represents the first application of the novel xLSTM architecture in epidemiological research and pioneers the evaluation of modern machine learning methods' accuracy in predicting cocci outbreaks. These findings contribute to the ongoing efforts to address cocci, offering a new approach to understanding and potentially mitigating the impact of the disease in affected regions.

Related Organizations
Keywords

Coccidioidomycosis, Meteorological Concepts, Incidence, Arizona, Humans, Neural Networks, Computer, Weather, California, Forecasting, Disease Outbreaks

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
hybrid