<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modeling a disease or the treatment of a patient has drawn much attention in recent years due to the vast amount of information that Electronic Health Records contain. This paper presents a probabilistic generative model of treatments that are described in terms of sequences of medical activities of variable length. The main objective is to identify distinct subtypes of treatments for a given disease, and discover their development and progression. To this end, the model considers that a sequence of actions has an associated hierarchical structure of latent variables that both classifies the sequences based on their evolution over time, and segments the sequences into different progression stages. The learning procedure of the model is performed with the Expectation-Maximization algorithm which considers the exponential number of configurations of the latent variables and is efficiently solved with a method based on dynamic programming. The evaluation of the model is twofold: first, we use synthetic data to demonstrate that the learning procedure allows the generative model underlying the data to be recovered; we then further assess the potential of our model to provide treatment classification and staging information in real-world data. Our model can be seen as a tool for classification, simulation, data augmentation and missing data imputation.
Models, Statistical, Humans, Learning, Computer Simulation, Algorithms
Models, Statistical, Humans, Learning, Computer Simulation, Algorithms
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |