
pmid: 27477839
We have developed a Decision Support Environment (DSE) for medical experts at the US Food and Drug Administration (FDA). The DSE contains two integrated systems: The Event-based Text-mining of Health Electronic Records (ETHER) and the Pattern-based and Advanced Network Analyzer for Clinical Evaluation and Assessment (PANACEA). These systems assist medical experts in reviewing reports submitted to the Vaccine Adverse Event Reporting System (VAERS) and the FDA Adverse Event Reporting System (FAERS). In this manuscript, we describe the DSE architecture and key functionalities, and examine its potential contributions to the signal management process by focusing on four use cases: the identification of missing cases from a case series, the identification of duplicate case reports, retrieving cases for a case series analysis, and community detection for signal identification and characterization.
Research Report, United States Food and Drug Administration, Adverse Drug Reaction Reporting Systems, Data Mining, Humans, Environment, United States, Decision Support Techniques
Research Report, United States Food and Drug Administration, Adverse Drug Reaction Reporting Systems, Data Mining, Humans, Environment, United States, Decision Support Techniques
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
