
The vacuolar H+-ATPase (V-ATPase) is a highly conserved proton pump responsible for the acidification of intracellular organelles in virtually all eukaryotic cells. V-ATPases are regulated by the rapid and reversible disassembly of the peripheral V1 domain from the integral membrane Vo domain, accompanied by release of the V1 C subunit from both domains. Efficient reassembly of V-ATPases requires the Regulator of the H+-ATPase of Vacuoles and Endosomes (RAVE) complex in yeast. Although a number of pairwise interactions between RAVE and V-ATPase subunits have been mapped, the low endogenous levels of the RAVE complex and lethality of constitutive RAV1 overexpression have hindered biochemical characterization of the intact RAVE complex. We describe a novel inducible overexpression system that allows purification of native RAVE and RAVE-V1 complexes. Both purified RAVE and RAVE-V1 contain substoichiometric levels of subunit C. RAVE-V1 binds tightly to expressed subunit C in vitro, but binding of subunit C to RAVE alone is weak. Neither RAVE nor RAVE-V1 interacts with the N-terminal domain of Vo subunit Vph1 in vitro. RAVE-V1 complexes, like isolated V1, have no MgATPase activity, suggesting that RAVE cannot reverse V1 inhibition generated by rotation of subunit H and entrapment of MgADP that occur upon disassembly. However, purified RAVE can accelerate reassembly of V1 carrying a mutant subunit H incapable of inhibition with Vo complexes reconstituted into lipid nanodiscs, consistent with its catalytic activity in vivo. These results provide new insights into the possible order of events in V-ATPase reassembly and the roles of the RAVE complex in each event.
Vacuolar Proton-Translocating ATPases, Saccharomyces cerevisiae Proteins, Saccharomyces cerevisiae, Research Article
Vacuolar Proton-Translocating ATPases, Saccharomyces cerevisiae Proteins, Saccharomyces cerevisiae, Research Article
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 17 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
