
pmid: 17411539
The primary objective of this study was to obtain basic, descriptive information about medical physicists involved in diagnostic radiology-related activities, the diagnostic-related activities that they performed, and the time spent on these activities.A survey was sent to a randomly selected sample of 1511 medical physicists from July through October 2001 using primarily e-mail methods; a total of 851 surveys was received, for a response rate of 56%. Of these, 427 were responses from physicists who do partly or only clinical diagnostic medical physics; it is this group for which results are presented.Fifty-four percent of the physicists who reported doing any clinical diagnostic medical physics performed clinical activities only in diagnostic medical physics. Fourteen percent of all those doing clinical diagnostic medical physics were women. Over 97% of the physicists doing clinical diagnostic medical physics reported having graduate degrees in physics; 53% had PhDs. The mean total weekly hours worked by physicists doing clinical diagnostic medical physics was 42. Medical physicists doing only clinical diagnostic activities reported working approximately 40 hours weekly, whereas those doing partly clinical diagnostic medical physics reported working 14 hours weekly in the field (approximately one-third of their work time). Radiography and fluoroscopy, computed tomography, nuclear medicine, and mammography are all fields in which the majority of those doing any clinical diagnostic medical physics are active. Full-time physicists working only in diagnostic medical physics were responsible for a median of 25 units of equipment, compared with a median of 10 units for those working only partly in the field. Number of units evaluated, frequency of evaluation, and hours per evaluation were reported for almost 20 types of equipment.Medical physicists performing diagnostic clinical activities typically are responsible for a large number and wide variety of imaging equipment. It would be helpful to study their work further, focusing in particular on whether there is a shortage, as is true of diagnostic radiologists, and whether the variety of responsibilities creates strain.
Diagnostic Imaging, Male, Radiation Dosage, United States, Radiation Protection, Health Care Surveys, Surveys and Questionnaires, Radiation Oncology, Humans, Female, Nuclear Medicine, Health Physics, Occupational Health
Diagnostic Imaging, Male, Radiation Dosage, United States, Radiation Protection, Health Care Surveys, Surveys and Questionnaires, Radiation Oncology, Humans, Female, Nuclear Medicine, Health Physics, Occupational Health
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
