Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of the Ameri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of the American Academy of Child & Adolescent Psychiatry
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Developmental Meta-Analysis of the Functional Neural Correlates of Autism Spectrum Disorders

Authors: Adriana Di Martino; Angela R. Laird; Matthew F. Pescosolido; Kerri L. Kim; Karen E. Seymour; Daniel P. Dickstein; Thania Galvan; +2 Authors

Developmental Meta-Analysis of the Functional Neural Correlates of Autism Spectrum Disorders

Abstract

There is a pressing need to elucidate the brain-behavior interactions underlying autism spectrum disorders (ASD) given the marked rise in ASD diagnosis over the past decade. Functional magnetic resonance imaging (fMRI) has begun to address this need, but few fMRI studies have evaluated age-related changes in ASD. Therefore, we conducted a developmental analysis of activation likelihood estimation (ALE) meta-analysis to compare child versus adult ASD fMRI studies. We hypothesized that children and adolescents with ASD (<18 years old) would rely less on prefrontal cortex structures than adults (≥18 years old).PubMed and PsycInfo literature searches were conducted to identify task-dependent fMRI studies of children or adults with ASD. Then recent GingerALE software improvements were leveraged to perform direct comparisons of child (n = 18) versus adult (n = 24) studies.ALE meta-analyses of social tasks showed that children and adolescents with ASD versus adults had significantly greater hyperactivation in the left post-central gyrus, and greater hypoactivation in the right hippocampus and right superior temporal gyrus. ALE meta-analyses of nonsocial tasks showed that children with ASD versus adults had significantly greater hyperactivation in the right insula and left cingulate gyrus, and hypoactivation in the right middle frontal gyrus.Our data suggest that the neural alterations associated with ASD are not static, occurring only in early childhood. Instead, children with ASD have altered neural activity compared to adults during both social and nonsocial tasks, especially in fronto-temporal structures. Longitudinal neuroimaging studies are required to examine these changes prospectively, as potential targets for brain-based treatments for ASD.

Related Organizations
Keywords

Adult, Child Development, Adolescent, Child Development Disorders, Pervasive, Functional Neuroimaging, Brain, Humans, Child, Magnetic Resonance Imaging

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
bronze