
pmid: 16678488
To defend against external pathogens, metazoan organisms have evolved numerous defenses that generally fall within the innate and adaptive immune responses. Considerable effort continues to focus on developing a vaccine to manipulate the adaptive immune system to protect against or control HIV-1. However, recent advances in our understanding of the innate immune system have revealed that cells have a potent intrinsic antiretroviral defense in the form of APOBEC3G, which is a member of a larger family of cytidine deaminases that are active against HIV-1 and other retroviruses. Insights into how the action of A3G is circumvented by HIV-1 through the action of its Vif protein, and the surprising mechanisms by which A3G is regulated within the cell, offer exciting new opportunities for developing novel anti-HIV-1 therapies that exploit this intrinsic antiretroviral system.
Repressor Proteins, Mice, Cytidine Deaminase, HIV-1, Animals, Humans, APOBEC-3G Deaminase, Nucleoside Deaminases
Repressor Proteins, Mice, Cytidine Deaminase, HIV-1, Animals, Humans, APOBEC-3G Deaminase, Nucleoside Deaminases
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 57 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
