Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hybrid query execution engine for large attributed graphs

Authors: Sherif Sakr; Sameh Elnikety; Yuxiong He;

Hybrid query execution engine for large attributed graphs

Abstract

Graphs are widely used for modeling complicated data such as social networks, bibliographical networks and knowledge bases. The growing sizes of graph databases motivate the crucial need for developing powerful and scalable graph-based query engines. We propose a SPARQL-like language, G-SPARQL, for querying attributed graphs. The language enables the expression of different types of graph queries that are of large interest in the databases that are modeled as large graph such as pattern matching, reachability and shortest path queries. Each query can combine both structural predicates and value-based predicates (on the attributes of the graph nodes/edges). We describe an algebraic compilation mechanism for our proposed query language which is extended from the relational algebra and based on the basic construct of building SPARQL queries, the Triple Pattern. We describe an efficient hybrid Memory/Disk representation of large attributed graphs where only the topology of the graph is maintained in memory while the data of the graph are stored in a relational database. The execution engine of our proposed query language splits parts of the query plan to be pushed inside the relational database (using SQL) while the execution of other parts of the query plan is processed using memory-based algorithms, as necessary. Experimental results on real and synthetic datasets demonstrate the efficiency and the scalability of our approach and show that our approach outperforms native graph databases by several factors.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!