Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Information Sciencesarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Information Sciences
Article . 2014 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assisting in search heuristics selection through multidimensional supervised classification: A case study on software testing

Authors: Ramón Sagarna; Alexander Mendiburu; Iñaki Inza; José Antonio Lozano 0001;

Assisting in search heuristics selection through multidimensional supervised classification: A case study on software testing

Abstract

A fundamental question in the field of approximation algorithms, for a given problem instance, is the selection of the best (or a suitable) algorithm with regard to some performance criteria. A practical strategy for facing this problem is the application of machine learning techniques. However, limited support has been given in the literature to the case of more than one performance criteria, which is the natural scenario for approximation algorithms. We propose multidimensional Bayesian network (mBN) classifiers as a relatively simple, yet well-principled, approach for helping to solve this problem. Precisely, we relax the algorithm selection decision problem into the elucidation of the nondominated subset of algorithms, which contains the best. This formulation can be used in different ways to elucidate the main problem, each of which can be tackled with an mBN classifier. Namely, we deal with two of them: the prediction of the whole nondominated set and whether an algorithm is nondominated or not. We illustrate the feasibility of the approach for real-life scenarios with a case study in the context of Search Based Software Test Data Generation (SBSTDG). A set of five SBSTDG generators is considered and the aim is to assist a hypothetical test engineer in elucidating good generators to fulfil the branch testing of a given programme.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!