Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Information Fusionarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Information Fusion
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities

Authors: Salvador García; Javier Del Ser; Lior Rokach; Francisco Herrera; Sergio González;

A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities

Abstract

Abstract Ensembles, especially ensembles of decision trees, are one of the most popular and successful techniques in machine learning. Recently, the number of ensemble-based proposals has grown steadily. Therefore, it is necessary to identify which are the appropriate algorithms for a certain problem. In this paper, we aim to help practitioners to choose the best ensemble technique according to their problem characteristics and their workflow. To do so, we revise the most renowned bagging and boosting algorithms and their software tools. These ensembles are described in detail within their variants and improvements available in the literature. Their online-available software tools are reviewed attending to the implemented versions and features. They are categorized according to their supported programming languages and computing paradigms. The performance of 14 different bagging and boosting based ensembles, including XGBoost, LightGBM and Random Forest, is empirically analyzed in terms of predictive capability and efficiency. This comparison is done under the same software environment with 76 different classification tasks. Their predictive capabilities are evaluated with a wide variety of scenarios, such as standard multi-class problems, scenarios with categorical features and big size data. The efficiency of these methods is analyzed with considerably large data-sets. Several practical perspectives and opportunities are also exposed for ensemble learning.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    421
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
421
Top 0.1%
Top 1%
Top 0.1%
Upload OA version
Are you the author? Do you have the OA version of this publication?