
In this paper, we propose an object detection approach using spatial histogram features. As spatial histograms consist of marginal distributions of an image over local patches, they can preserve texture and shape information of an object simultaneously. We employ Fisher criterion and mutual information to measure discriminability and features correlation of spatial histogram features. We further train a hierarchical classifier by combining cascade histogram matching and support vector machine. The cascade histogram matching is trained via automatically selected discriminative features. A forward sequential selection method is presented to construct uncorrelated and discriminative feature sets for support vector machine classification. We evaluate the proposed approach on two different kinds of objects: car and video text. Experimental results show that the proposed approach is efficient and robust in object detection.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 76 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
