
AbstractThe design of corrugated panels has wide application in engineering. For example corrugated panels are often used in roof structures in civil engineering. More recently corrugated laminates have been suggested as a good solution for morphing aircraft skins due to their extremely anisotropic behaviour. The optimal design of these structures requires simple models of the panels or skins that may be incorporated into multi-disciplinary system models. Thus equivalent material models are required that retain the dependence on the geometric parameters of the corrugated skins or panels. An homogenisation-based analytical model, which could be used for any corrugation shape, is suggested in this paper. This method is based on a simplified geometry for a unit-cell and the stiffness properties of original sheet. This paper outlines such a modelling strategy, gives explicit expressions to calculate the equivalent material properties, and demonstrates the performance of the approach using two popular corrugation shapes.
Morphing skin, Mechanical Engineering, Applied Mathematics, Condensed Matter Physics, Materials Science(all), Mechanics of Materials, Modelling and Simulation, Homogenisation, Corrugated panel, Orthotropic plate, Composites
Morphing skin, Mechanical Engineering, Applied Mathematics, Condensed Matter Physics, Materials Science(all), Mechanics of Materials, Modelling and Simulation, Homogenisation, Corrugated panel, Orthotropic plate, Composites
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 196 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
