Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal for Parasitology
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Identification and characterization of proteins in the Amblyomma americanum tick cement cone

Authors: Albert Mulenga; Željko Radulović; Antonio Pinto; Antonio Pinto; Antonio Pinto; Jolene K. Diedrich; Jolene K. Diedrich; +6 Authors

Identification and characterization of proteins in the Amblyomma americanum tick cement cone

Abstract

The adaptation of hard ticks to feed for long periods is facilitated by the cement cone, which securely anchors the tick mouthparts onto host skin and protects the tick from being groomed off by the host. Thus, preventing tick cement deposition is an attractive target for the development of innovative tick control. We used LC-MS/MS sequencing to identify 160 Amblyomma americanum tick cement proteins that include glycine-rich proteins (GRP, 19%), protease inhibitors (12%), proteins of unknown function (11%), mucin (4%), detoxification, storage, and lipocalin at 1% each, and housekeeping proteins (50%). Spatiotemporal transcription analysis showing mRNA expression in multiple tick organs and transcript abundance increasing with feeding suggest that selected GRPs (n = 13) regulate multiple tick feeding functions, being classified as constitutively expressed (CE), feeding induced (FI), and up-regulated with feeding (UR). We show that transcription of CE GRPs is likely under the control of tick appetence associated factors in that mRNA abundance increased several thousand fold in 1 week old adult ticks, the time period that coincides with tick attainment of appetence. Given the high number of targets, we synthesized and injected unfed ticks with combinatorial (co) double stranded (ds)RNA and disrupted GRP mRNA in clusters according to similar transcription patterns: CE (n = 3), FI, (n = 4), and UR (n = 6) to streamline the work. Our data suggest that CE and FI GRPs are important for maintenance of the tick feeding site in that reddening and subsequent bleeding were observed around the mouthparts of CE and FI GRP co-dsRNA injected ticks during feeding. Furthermore, although not significantly different, indices for blood meal size and fecundity were apparently reduced in FI and UR ticks. We discuss our data with reference to A. americanum tick feeding physiology.

Keywords

Analysis of Variance, Ixodidae, Reverse Transcriptase Polymerase Chain Reaction, Arthropod Proteins, Sequence Analysis, Protein, Tandem Mass Spectrometry, Animals, Female, RNA Interference, RNA, Messenger, Rabbits, Transcriptome, Chickens, Chromatography, Liquid, RNA, Double-Stranded

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
bronze