Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Medical Microbiology
Article . 2015 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

Borrelia burgdorferi sensu stricto and Borrelia afzelii : Population structure and differential pathogenicity

Authors: Jungnick, Sabrina; Margos, Gabriele; Rieger, Melissa; Dzaferovic, Eldina; Bent, Stephen J.; Overzier, Evelyn; Silaghi, Cornelia; +5 Authors

Borrelia burgdorferi sensu stricto and Borrelia afzelii : Population structure and differential pathogenicity

Abstract

MultiLocus sequence typing (MLST) is considered a powerful method to unveil relationships within bacterial populations and it constitutes an economical and fast alternative to whole genome sequencing. We used this method to understand whether there are differences in human pathogenicity within and between different Borrelia burgdorferi sensu lato species. Therefore, 136 strains from human patients or ticks from Europe were included in MLST analyses. The scheme employed used eight chromosomally located housekeeping genes (i.e. clpA, clpX, nifS, pepX, pyrG, recG, rplB and uvrA). We investigated Borrelia afzelii, one of the predominant species in Europe, and B. burgdorferi sensu stricto (s.s.), because it allowed comparative analysis to strains from the USA. We typed 113 patient isolates as well as 23 tick isolates. For further comparative purposes an additional 746 strains from Europe and the USA were included from the MLST website http://borrelia.mlst.net. We observed an overlap of the B. burgdorferi s.s. populations from Europe and the USA isolated from human patients while there was no overlap of the populations found in tick vectors. Further results indicate that B. afzelii was significantly less associated with disseminated infection than B. burgdorferi s.s. and that B. burgdorferi s.s. from Europe caused neuroborreliosis to a significantly greater extent than B. afzelii or B. burgdorferi s.s. in the USA. Our data suggest that there may be an evolutionary basis of differential interspecies pathogenicity in Borrelia. This was not evident within Borrelia species: we found the same sequence types in patients with disseminated or localized symptoms when the number of strains was sufficiently high. We hypothesize that the finding that B. burgdorferi s.s. in Europe is much more associated with neuroborreliosis than in the USA maybe linked to factor(s) related to the human host, the tick vector or the bacterium itself (e.g. plasmid content and structure).

Country
Australia
Keywords

Genotype, Population structure, 2726 Microbiology (medical), Ticks, Borrelia burgdorferi Group, Human pathogenesisa, Animals, Humans, Human pathogenesis, Borrelia burgdorferi sensu stricto, Lyme borreliosis, Lyme Disease, Genes, Essential, 2404 Microbiology, Genetic Variation, 2725 Infectious Diseases, United States, Europe, Genes, Bacterial, Borrelia burgdorferi, Borrelia afzelii, Multilocus sequence analysis, Multilocus Sequence Typing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
gold