Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Medical Microbiology
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enterotoxigenic Escherichia coli in veterinary medicine

Authors: Béla Nagy; Péter Zs. Fekete;

Enterotoxigenic Escherichia coli in veterinary medicine

Abstract

Enterotoxigenic Escherichia coli (ETEC) infection is the most common type of colibacillosis of young animals (primarily pigs and calves), and it is a significant cause of diarrhoea among travellers and children in the developing world. The main virulence attributes of ETEC are adhesins and enterotoxins, which are mostly regulated on large plasmids. Almost all ETEC bacteria are known to adhere to receptors on the small intestinal epithelium by their proteinaceous surface appendages (fimbriae, pili) or by afimbrial proteins without inducing significant morphological changes. Furthermore, they secrete protein toxins (enterotoxins) to reduce absorption and to increase fluid and electrolyte secretion of small intestinal epithelial cells. Regarding details of epidemiology, pathogenesis, diagnosis and prevention of ETEC infections and diarrhoea in animals, readers are referred to an earlier more extensive review [Nagy and Fekete, 1999. Enterotoxigenic Escherichia coli (ETEC) in farm animals. Vet. Res. 30, 259-284]. This paper intends to summarise our basic knowledge and to highlight the new developments and most actual research topics in the area of ETEC infections in veterinary medicine. Attention is paid to recently described new virulence factors and to new genetic vectors in ETEC bacteria. Applications of our knowledge in the diagnosis and prevention of ETEC diarrhoea in animals will also be discussed.

Related Organizations
Keywords

Enterotoxins, Virulence, Escherichia coli Vaccines, Escherichia coli Proteins, Bacterial Toxins, Escherichia coli, Animals, Escherichia coli Infections, Animal Diseases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    295
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
295
Top 1%
Top 1%
Top 10%
gold