Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BCAM's Institutional...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Hydrogen Energy
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The impact of Mn and Al on the trapping and diffusion of hydrogen in γ-Fe: An atomistic insight

Authors: Bikram Kumar Das; Poulami Chakraborty; Mingyuan Lu; Mauricio Rincón Bonilla; Elena Akhmatskaya;

The impact of Mn and Al on the trapping and diffusion of hydrogen in γ-Fe: An atomistic insight

Abstract

Common alloying elements such as Mn and Al can significantly influence the local dynamics of Hydrogen in steel, promoting or attenuating the mechanisms associated with Hydrogen induced Embrittlement (HIE). Here, we propose a first principles-based framework to systematically unlock the physical underpinnings of such influence in Mn/Al-alloyed γ-Fe. Our framework can be readily adapted to analyse H behaviour in the bulk phase of any face-centred cubic (FCC) Fe-X-Y alloy, provided that solutes X and Y substitute the Fe sites. In our scheme, all thermodynamically stable substitutional solute sites were identified ( ≤ 5.4 wt% Mn; ≤ 4 wt% Al) up to the third nearest neighbour (NN) shell of a single H atom. The impact of Mn/Al on H-binding was quantitatively evaluated, indicating a surprisingly strong correlation with the local Al distribution regardless Mn content, and indirect stabilization by Al when present in the 2nd NN shell. Nonetheless, Al strongly repels H bonding. The contradictory role of Al was explained in terms of bonding/anti-bonding orbitals occupancy in H-M interactions (M = Al, Mn, Fe). The barriers to H hopping between adjacent local environments and the corresponding jump frequencies were subsequently calculated, providing insights into the limits imposed by the presence of Al and Mn on H mobility in Mn/Al-alloyed γ-Fe. Most notably, presence of Al in the 2nd NN shell of H severely reduces the H jump frequency, leading to irreversible trapping at Al high contents. Such behaviour may critically contribute to mitigate H-induced delayed fracture in Al-rich austenite steel.

JDC2022-049793-I/MCIN/AEI/10.13039/501100011033 RyC2022-036500-I CEX2021-001142-S PID2022-136585NB-C22 RES, QHS-2023-2-0034

Related Organizations
Keywords

Hydrogen trapping, hydrogen embrittlement, hydrogen diffusion, steel, Density Functional Theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green