
Abstract Using realized variance to estimate daily conditional variance of financial returns, we compare forecasts of daily variance from standard GARCH and FIGARCH models estimated by Quasi-Maximum Likelihood (QML), and from projections on past realized volatilities obtained from high-frequency data. We consider horizons extending to 30 trading days. The forecasts are compared with the unconditional sample variance of daily returns treated as a predictor of daily variance, allowing us to estimate the maximum horizon at which conditioning information has exploitable value for variance forecasting. With foreign exchange return data (DM/$US and Yen/$US), we find evidence of forecasting power at horizons of up to 30 trading days, on each of two financial returns series. We also find some evidence that the result of (e.g.) Bollerslev and Wright [Bollerslev, T., & Wright, J. H. (2001) High-frequency data, frequency domain inference, and volatility forecasting. Review of Economics and Statistics , 83, 596–602], that projections on past realized variance provide better one-step forecasts than the QML-GARCH and -FIGARCH forecasts, appears to extend to longer horizons up to around 10 to 15 trading days. At longer horizons, there is less to distinguish the forecast methods, but the evidence does suggest positive forecast content at 30 days for various forecast types.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 19 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
