Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Antimicrobial Agents
Article . 2007 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

The secret life of the multilocus sequence type

Authors: Katherine M E, Turner; Edward J, Feil;

The secret life of the multilocus sequence type

Abstract

Such are the challenges, and the potential, presented by complete genome sequences that the eventual erosion of the boundaries between biochemistry, ecology, bioinformatics, population biology, epidemiology and medical microbiology will perhaps be the most profound legacy of the genomics revolution. The development of nucleotide sequence-based typing schemes (multilocus sequence typing (MLST)) represents a similar synthesis, for this technique both matches the practical requirements for a highly portable standard for strain characterisation whilst also being firmly grounded in the population biology principles of multilocus enzyme electrophoresis (MLEE). Contrary to recent claims that population biology analyses of public health-oriented MLST data 'obscures its utility in applied microbiology' [Maiden MC. Multilocus sequence typing of bacteria. Annu Rev Microbiol 2006;60:561-88.], we argue that such an emphasis is essential for full interpretation of the data. Here we note a pertinent case in point; how a consideration of the rates of genetic recombination can help to explain why MLST data tend to correlate with virulence properties in some species (Neisseria meningitidis) but not in others (Staphylococcus aureus). We also discuss how the argument applies to the identification of recently emerged methicillin-resistant S. aureus (MRSA) clones using MLST. We conclude with a speculative rationale for promoting the 'clonal complexes' of S. aureus to species status.

Related Organizations
Keywords

Recombination, Genetic, Staphylococcus aureus, Virulence, Drug Resistance, Sequence Analysis, DNA, Bacterial Typing Techniques

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!