
Disk material has been observed around both components of some young close binary star systems. It has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around 'close' binary star systems with stellar separations between 0.05 AU and 0.4 AU and binary eccentricities up to 0.8. In each simulation, the sum of the masses of the two stars is 1 solar mass, and giant planets are included. Our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances less than ~ 0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.
60 pages, 4 tables, and 11 low resolution eps figures. Article with high resolution figures is available at http://www-personal.umich.edu/~equintan/publications.html . Accepted for publication in Icarus
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 91 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
