
pmid: 15944078
We used two-dimensional SDS-PAGE and microsequencing or peptide mass fingerprinting to identify major proteins in the hemolymph of Anopheles gambiae. We found approximately 280 protein spots in hemolymph and identified 28 spots, representing 26 individual proteins. Most of these proteins have known or predicted functions in immunity, iron transport, or lipid biology. Many of the proteins have been found in hemolymph in other insects but one protein is novel: a new member of the ML family (involved in lipid recognition). Three of the identified proteins increased in spot intensity or appeared de novo following bacterial injection: a phenoloxidase, and two chitinase-like proteins. A subset of proteins decreased following bacterial injections: these included the light and heavy chains of ferritin. Several proteins appeared in hemolymph following any wound or injection. Most of these are metabolic enzymes lacking signal peptides that are likely to be released as a result of damage to muscles and other tissues by injury. The map will provide a useful tool for examining changes in hemolymph proteins following blood feeding and infection by parasites.
Bacteria, Proteome, Hemolymph, Anopheles, Immunity, Animals, Electrophoresis, Polyacrylamide Gel, DNA Fingerprinting, Sequence Analysis
Bacteria, Proteome, Hemolymph, Anopheles, Immunity, Animals, Electrophoresis, Polyacrylamide Gel, DNA Fingerprinting, Sequence Analysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 73 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
