Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Hematology, Transfus...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hematology, Transfusion and Cell Therapy
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

Platelet antibody detection assays: a single-laboratory comparison of MAIPA, PIFT, and microsphere-based multiplex assays Pak-Lx

Authors: Thiago Henrique Costa; Carolina Bonet-Bub; José Mauro Kutner;

Platelet antibody detection assays: a single-laboratory comparison of MAIPA, PIFT, and microsphere-based multiplex assays Pak-Lx

Abstract

The identification of platelet antibodies is essential for diagnosing and managing conditions such as fetal and neonatal alloimmune thrombocytopenic purpura, post-transfusion purpura, and immune platelet refractoriness. Monoclonal antibody immobilization of platelet antigens (MAIPA) is the standard method for detecting anti-human platelet antigen (HPA) antibodies, while the detection of anti-HLA antibodies once relied on the complement-dependent cytotoxicity method, however advanced technologies such as enzyme-linked immunosorbent assay and Luminex have significantly improved sensitivity and accuracy in identifying these antibodies. Flow cytometry-based techniques (platelet immunofluorescence test - PIFT) and Luminex platform-driven microsphere-based multiplex assays (Pak-Lx) are widely employed in platelet immunology laboratories owing to their remarkable flexibility and versatility. The present study compared the sensitivity, specificity, and concordance of these different serological techniques used in platelet antibody identification.One hundred serum samples from patients suspected of immune-mediated platelet disorders were examined. Initially, the samples underwent testing using the MAIPA method. Subsequently, the results were compared with three alternative methods: PIFT and microsphere-based multiplex assays for both HLA and HPA antibodies.Pak-Lx demonstrated a 94 % agreement with MAIPA, while PIFT had 88 % agreement for HPA antibodies. For HLA antibody detection, Pak-Lx versus DLX had 75 % concordance, MAIPA versus DLX showed 77 %, and PIFT versus DLX displayed an 81 % concordance rate. Remarkably, there were no significant differences in concordance levels between Pak-Lx and PIFT compared to MAIPA and DLX for anti-HPA and HLA antibodies, respectively.This study found no significant differences in concordance among the tested assays for detecting anti-HPA and anti-HLA antibodies. These data suggest that no single method can detect all clinically important antibodies. Therefore, it is advisable that each laboratory develops customized protocols based on their expertise and employs complementary methods for comprehensive patient assessments.

Related Organizations
Keywords

Human platelet antigens (HPA), MAIPA, Platelet antibody detection, Diseases of the blood and blood-forming organs, Original Article, RC633-647.5, Human leucocyte antigens (HLA), Antibodies, Alloimmunization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold