Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Hearing Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hearing Research
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Towards a unifying basis of auditory thresholds: Thresholds for multicomponent stimuli

Authors: Peter Heil; Esraa S.I. Mohamed; Artur Matysiak;

Towards a unifying basis of auditory thresholds: Thresholds for multicomponent stimuli

Abstract

Sounds consisting of multiple simultaneous or consecutive components can be detected by listeners when the stimulus levels of the components are lower than those needed to detect the individual components alone. The mechanisms underlying such spectral, spectrotemporal, temporal, or across-ear integration are not completely understood. Here, we report threshold measurements from human subjects for multicomponent stimuli (tone complexes, tone sequences, diotic or dichotic tones) and for their individual sinusoidal components in quiet. We examine whether the data are compatible with the detection model developed by Heil, Matysiak, and Neubauer (HMN model) to account for temporal integration (Heil et al. 2017), and we compare its performance to that of the statistical summation model (Green 1958), the model commonly used to account for spectral and spectrotemporal integration. In addition, we compare the performance of both models with respect to previously published thresholds for sequences of identical tones and for diotic tones. The HMN model is similar to the statistical summation model but is based on the assumption that the decision variable is a number of sensory events generated by the components via independent Poisson point processes. The rate of events is low without stimulation and increases with stimulation. The increase is proportional to the time-varying amplitude envelope of the bandpass-filtered component(s) raised to an exponent of 3. For an ideal observer, the decision variable is the sum of the events from all channels carrying information, for as long as they carry information. We find that the HMN model provides a better account of the thresholds for multicomponent stimuli than the statistical summation model, and it offers a unifying account of spectral, spectrotemporal, temporal, and across-ear integration at threshold.

Keywords

Models, Statistical, Sound, Time Factors, Acoustic Stimulation, Humans, Auditory Threshold, Psychoacoustics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!