Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Harmful Algaearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Harmful Algae
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stability of toxigenic Microcystis blooms

Authors: Linda A. Lawton; Satya Prakash; Christine Edwards;

Stability of toxigenic Microcystis blooms

Abstract

Abstract This is the first detailed study on the occurrence of cyanobacterial toxins in India, where we studied five eutrophic, temple ponds in the vicinity of Varanasi city, Uttar Pradesh, which continuously supported blooms of Microcystis sp. for several years. Bloom material from all five ponds was sampled bi-monthly from September 2003 to August 2004. Analysis of extracts by high-performance liquid chromatography (HPLC) indicated that microcystin-RR (MC-RR) was present all year round at high concentrations (311–1540 μg/g, dry weight), posing a significant health hazard especially since all five ponds are widely used for bathing, washing, cattle drinking supply, irrigation and recreation. In addition, there was unusually low temporal variation in concentration of MC-RR in each pond, Characterization of microcystin composition of several bloom samples from this study by HPLC–PDA/MS confirmed that additional microcystins were present in many of the samples. The rarely reported, MC-AR was frequently detected in bloom samples from three of the ponds (Adityanagar, Durgakund and Sankuldhara), where it typically represented 20% of the microcystin pool. MC-WR was frequently found in samples from Adityanagar and Sankuldhara, representing 5–10% of the microcystin pool. MC-LR, along with the previously unreported MC-AHar, each represented approximately 5% of the microcystin pool when present. Bloom samples from each pond had a characteristic microcystin profile, when sampled from 2003 to 2006, suggesting persistent species/strain domination. The perennial and consistent nature of the toxic Microcystis blooms in these ponds is highly unusual, in contrast to the commonly encountered temporal and spatial variation of toxigenic and non-toxigenic species. Laboratory isolates from several ponds were shown to produce microcystins, showing similar microcystin composition to the original bloom material.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    32
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
32
Top 10%
Top 10%
Top 10%
Related to Research communities
Italian National Biodiversity Future Center
Upload OA version
Are you the author? Do you have the OA version of this publication?