Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Growth Hormone & IGF...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Growth Hormone & IGF Research
Article . 2011 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effects of type 1 IGF receptor inhibition in a mouse model of diabetic kidney disease

Authors: Yael Segev; Leonid Kachko; Ralph Rabkin; Ralph Rabkin; Daniel Landau; Ariel Troib; Jack F. Youngren;

The effects of type 1 IGF receptor inhibition in a mouse model of diabetic kidney disease

Abstract

We have recently shown increased sensitivity to IGF-I induced signal transduction in kidneys of diabetic mice. Accordingly we investigated the effects of PQ401, a novel diarylurea compound that inhibits IGF1R autophosphorylation in type I diabetes.Control (C) and Diabetic (D) mice were administered PQ401 (CP, DP) or vehicle (C, D) for 3weeks.CP animals showed a decrease in renal phosphorylated (p-)AKT and p-IGF1R. However, PQ401 had no effect on diabetic state (hyperglycemia, weight loss) or renal disease parameters (hypertrophy, hyperfiltration and albuminuria). Type IV collagen as well as TGF-β mRNA increased in DP and D compared to C. In the CP group renal hypertrophy with fat accumulation in proximal tubuli and increased renal IGF-I, collagen IV and TGF-β mRNA were seen.IGF1R inhibition by PQ401 exerted no significant effects on diabetic kidney disease parameters, arguing against a role for IGF-I in the pathogenesis of diabetic kidney disease. However, PQ401 affects normal kidneys, inducing renal hypertrophy as well as collagen and fat accumulation, with increased renal IGF-I mRNA, suggestive of a damage-regeneration process. Therefore, this diarylurea compound is not beneficial in early diabetic kidney disease. Its potential deleterious effects on kidney tissue need to be further investigated.

Keywords

Collagen Type IV, Phenylurea Compounds, Diabetes Mellitus, Experimental, Receptor, IGF Type 1, Transforming Growth Factor beta1, Disease Models, Animal, Mice, Gene Expression Regulation, Mice, Inbred NOD, Aminoquinolines, Animals, Diabetic Nephropathies, Insulin-Like Growth Factor I, Phosphorylation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
bronze