Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Genearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Gene
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PKM2, a potential target for regulating cancer

Authors: Yu-huan Li; Xiao-feng Li; Jia-tao Liu; Hua Wang; Lu-lu Fan; Jun Li; Guo-ping Sun;

PKM2, a potential target for regulating cancer

Abstract

Aberrated glucose metabolism is a key future of cancer cells. Unlike normal cells, tumor cells favor glycolysis even in the presence of sufficient oxygen. Pyruvate kinase (PK), a key glucose metabolic enzyme, converts phosphoenolpyruvate (PEP) to pyruvate by transferring the high-energy phosphate group to adenosine diphosphate (ADP) to produce adenosine triphosphate (ATP). Pyruvate kinase M2 (PKM2), one of the four isozyme of PK, which universally expressed in rapidly proliferating cells such as embryonic cells and cancer cells. Recent years, more and more research suggested PKM2 plays a crucial role in cancer progression through both metabolic and non-metabolic pathways. On the one hand, the middle product of glycolysis, such as amino acids, nucleotides, lipids is necessary to rapid growth of cancer cells. On the other hand, PKM2 supports tumor growth through regulating the expression of gene that involved in cell proliferation, migration and apoptosis. In this article, we review the recent advances to further understand the regulation and function of PKM2 in tumorigenesis. Given its multiple effects on cancer, PKM2 may be a potential target for cancer diagnosis and treatment.

Related Organizations
Keywords

Thyroid Hormones, Gene Expression Regulation, Carcinogenesis, Neoplasms, Humans, Membrane Proteins, Carrier Proteins, Thyroid Hormone-Binding Proteins

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    84
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
84
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!