<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
New technologies for DNA sequencing, coupled with advanced analytical approaches, are now providing unprecedented speed and precision in decoding human genomes. This combination of technology and analysis, when applied to the study of cancer genomes, is revealing specific and novel information about the fundamental genetic mechanisms that underlie cancer's development and progression. This review outlines the history of the past several years of development in this realm, and discusses the current and future applications that will further elucidate cancer's genomic causes.
Genome, Human, DNA, Neoplasm, Genomics, Kaplan-Meier Estimate, Sequence Analysis, DNA, Neoplasms, Mutation, Disease Progression, Chromosomes, Human, Humans, Genetic Testing, Neoplasm Metastasis, Genes, Neoplasm
Genome, Human, DNA, Neoplasm, Genomics, Kaplan-Meier Estimate, Sequence Analysis, DNA, Neoplasms, Mutation, Disease Progression, Chromosomes, Human, Humans, Genetic Testing, Neoplasm Metastasis, Genes, Neoplasm
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 59 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |