
pmid: 17320374
At the foundation of all eukaryotic kinetochores is a unique histone variant, known as CenH3 (centromere histone H3). We are starting to identify the histone chaperones responsible for CenH3 deposition at centromere DNA, and the mechanisms that restrict CenH3 from chromosome arms. The specialized nucleosome that contains CenH3 in place of canonical histone H3 lies at the interface between microtubules and chromosomes and directs kinetochore protein assembly. By contrast, pericentric chromatin is highly elastic and can stretch or recoil in response to microtubule shortening or growth in mitosis. The variety in histone modification is likely to play a key role in regulating the behavior of these distinct chromatin domains.
Histones, Chromosomal Proteins, Non-Histone, Centromere, Mitosis, Nuclear Proteins, Cell Cycle Proteins, Microtubules, Cohesins, Chromatin, Nucleosomes
Histones, Chromosomal Proteins, Non-Histone, Centromere, Mitosis, Nuclear Proteins, Cell Cycle Proteins, Microtubules, Cohesins, Chromatin, Nucleosomes
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 28 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
