Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ TECNALIA Publication...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Future Generation Computer Systems
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Let nature decide its nature: On the design of collaborative hyperheuristics for decentralized ephemeral environments

Authors: Aritz Martinez; Eneko Osaba; Miren Nekane Bilbao; Javier Del Ser;

Let nature decide its nature: On the design of collaborative hyperheuristics for decentralized ephemeral environments

Abstract

Abstract The research community has traditionally aimed at the derivation and development of metaheuristic solvers, suited to deal with problems of very diverse characteristics. Unfortunately, it is often the case that new metaheuristic techniques are presented and assessed in a reduced set of cases, mostly due to the lack of computational resources to undertake extensive performance studies over a sufficiently diverse set of optimization benchmarks. This manuscript explores how ephemeral environments could be exploited to efficiently construct metaheuristic algorithms by virtue of a collaborative, distributed nature-inspired hyperheuristic framework specifically designed to be deployed over unreliable, uncoordinated computation nodes. To this end, the designed framework defines two types of nodes (trackers and peers, similarly to peer-to-peer networks), both reacting resiliently to unexpected disconnections of nodes disregarding their type. Peer nodes exchange their populations (i.e. constructed algorithms) asynchronously, so that local optima are avoided at every peer thanks to the contribution by other nodes. Furthermore, the overall platform is fully scalable, allowing its users to implement and share newly derived operators and fitness functions so as to enrich the diversity and universality of the heuristic algorithms found by the framework. Results obtained from in-lab experiments with a reduced number of nodes are discussed to shed light on the evolution of the best solution of the framework with the number of connected peers and the tolerance of the network to node disconnections.

Keywords

Genetic Algorithm, Hyperheuristics, Bio-inspired computation, Metaheuristics, Evolutionary computation, Ephemeral computing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green