Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Free Radical Biology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Free Radical Biology and Medicine
Article . 2005 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cross-compartment protection by SOD1

Authors: Stefan I. Liochev; Irwin Fridovich;

Cross-compartment protection by SOD1

Abstract

The absence of SOD1 in yeast has been found to result in inactivation of Lys4p. This [4Fe-4S]-containing dehydratase is in the pathway of biosynthesis of lysine, hence the oxygen-dependent lysine auxotrophy seen in this case. O(2)(-) is known to oxidize and thus destabilize the [Fe-4S] clusters of dehydratases; hence, this would make perfect sense were it not for the fact that SOD1 localizes to the cytosol and the intermembrane space of mitochondria, whereas Lys4p localizes to the mitochondrial matrix. How could SOD1 in one compartment protect against O(2)(-) attack in a different compartment? We suggest that the relatively high levels of O(2)(-) in the cytosol and intermembrane space of the SOD1 mutant may react with endogenous NO, forming HOONO that can diffuse into the mitochondrial matrix and there inactivate Lys4p and other [4Fe-4S]-containing dehydratases.

Related Organizations
Keywords

Iron-Sulfur Proteins, Superoxide Dismutase, Iron, Lysine, Cell Membrane, Saccharomyces cerevisiae, Mitochondria, Leucine, Superoxides, Amino Acids, Hydro-Lyases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!