
pmid: 15589383
The absence of SOD1 in yeast has been found to result in inactivation of Lys4p. This [4Fe-4S]-containing dehydratase is in the pathway of biosynthesis of lysine, hence the oxygen-dependent lysine auxotrophy seen in this case. O(2)(-) is known to oxidize and thus destabilize the [Fe-4S] clusters of dehydratases; hence, this would make perfect sense were it not for the fact that SOD1 localizes to the cytosol and the intermembrane space of mitochondria, whereas Lys4p localizes to the mitochondrial matrix. How could SOD1 in one compartment protect against O(2)(-) attack in a different compartment? We suggest that the relatively high levels of O(2)(-) in the cytosol and intermembrane space of the SOD1 mutant may react with endogenous NO, forming HOONO that can diffuse into the mitochondrial matrix and there inactivate Lys4p and other [4Fe-4S]-containing dehydratases.
Iron-Sulfur Proteins, Superoxide Dismutase, Iron, Lysine, Cell Membrane, Saccharomyces cerevisiae, Mitochondria, Leucine, Superoxides, Amino Acids, Hydro-Lyases
Iron-Sulfur Proteins, Superoxide Dismutase, Iron, Lysine, Cell Membrane, Saccharomyces cerevisiae, Mitochondria, Leucine, Superoxides, Amino Acids, Hydro-Lyases
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 24 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
