Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Finite Fields and Th...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Finite Fields and Their Applications
Article . 2018 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2018
Data sources: zbMATH Open
https://dx.doi.org/10.48550/ar...
Article . 2016
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 6 versions
addClaim

Minimum distance and the minimum weight codewords of Schubert codes

Authors: Sudhir R. Ghorpade; Prasant Singh;

Minimum distance and the minimum weight codewords of Schubert codes

Abstract

We consider linear codes associated to Schubert varieties in Grassmannians. A formula for the minimum distance of these codes was conjectured in 2000 and after having been established in various special cases, it was proved in 2008 by Xiang. We give an alternative proof of this formula. Further, we propose a characterization of the minimum weight codewords of Schubert codes by introducing the notion of Schubert decomposable elements of certain exterior powers. It is shown that codewords corresponding to Schubert decomposable elements are of minimum weight and also that the converse is true in many cases. A lower bound, and in some cases, an exact formula, for the number of minimum weight codewords of Schubert codes is also given. From a geometric point of view, these results correspond to determining the maximum number of $\mathbb{F}_q$-rational points that can lie on a hyperplane section of a Schubert variety in a Grassmannian with its nondegenerate embedding in a projective subspace of the Pl��cker projective space, and also the number of hyperplanes for which the maximum is attained.

26 pages; Slightly revised version; to appear in Finite Fields Appl

Country
India
Keywords

FOS: Computer and information sciences, Grassmannian, Computer Science - Information Theory, Applications to coding theory and cryptography of arithmetic geometry, minimum weight codewords, Grassmannians, Schubert varieties, flag manifolds, Mathematics - Algebraic Geometry, FOS: Mathematics, Algebraic Geometry (math.AG), 94B05, 94B27, 14M15, 14G50, Linear codes (general theory), Schubert variety, LINEAR CODES, Information Theory (cs.IT), GRASSMANN CODES, Grassmann code, Minimum distance of a code, Schubert code, VARIETIES, Minimum weight codewords, minimum distance of a code, Geometric methods (including applications of algebraic geometry) applied to coding theory

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Average
Green
bronze