Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://dx.doi.org/10...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Letters
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Letters
Article . 2005
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tetrahydrobiopterin protects phenylalanine hydroxylase activity in vivo: Implications for tetrahydrobiopterin‐responsive hyperphenylalaninemia

Authors: Thöny, Beat; Ding, Zhaobing; Martı́nez, Aurora;

Tetrahydrobiopterin protects phenylalanine hydroxylase activity in vivo: Implications for tetrahydrobiopterin‐responsive hyperphenylalaninemia

Abstract

The natural cofactor of phenylalanine hydroxylase (PAH), tetrahydrobiopterin (BH4), regulates the enzyme activity as well as being essential in catalysis. BH4‐responsive PAH deficiency is a variant of hyperphenylalaninemia or phenylketonuria (PKU) caused by mutations in the human PAH gene that respond to oral BH4 loading by stimulating enzyme activity and therefore lowering serum phenylalanine. Here, we showed in a coupled transcription–translation in vitro assay that upon expression in the presence of BH4, wild‐type PAH enzyme activity was enhanced. We then investigated the effect of BH4 on PAH activity in transgenic mice that had a complete or partial deficiency in the endogenous cofactor biosynthesis. The rate of hepatic PAH enzyme activity increased significantly with BH4 content without affecting gene expression or Pah‐mRNA stability. These results indicate that BH4 has a chaperon‐like effect on PAH synthesis and/or is a protecting cofactor against enzyme auto‐inactivation and degradation also in vivo. Our findings thus contribute to the understanding of the regulation of PAH by its cofactor BH4 on an additional level and provide a molecular explanation for cofactor‐responsive PKU.

Related Organizations
Keywords

Hepatic phenylalanine hydroxylase, Heterozygote, Phenylalanine, Blotting, Western, Genes, Recessive, Mice, Transgenic, Chaperon, Gene Expression Regulation, Enzymologic, Mice, Phenylketonurias, Phenylketonuria, Animals, Humans, RNA, Messenger, Amino Acid Metabolism, Inborn Errors, Mice, Knockout, Tetrahydrobiopterin, Hyperphenylalaninemia, Phenylalanine Hydroxylase, Biopterins, Kinetics, Animals, Newborn, Liver, Protein Biosynthesis, Gene expression, Gene Deletion

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    63
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
63
Top 10%
Top 10%
Top 10%