Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Eye Res...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Eye Research
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Inducible brown/beige adipocytes in retro-orbital adipose tissues

Authors: Kazuki Yoshioka; Takahiro Ohzeki; Osamu Hashimoto; Masayuki Funaba; Makoto Sugiyama; Norihisa Kanada; Daichi Shindo;

Inducible brown/beige adipocytes in retro-orbital adipose tissues

Abstract

Beige adipocytes and brown adipocytes can generate heat by using mitochondrial uncoupling protein 1 (Ucp1), a thermogenic protein. Browning/beiging is the emergence of beige adipocytes in white adipose tissues (WAT) for cold acclimatization. Here we show the existence of brown/beige adipocytes in retro-orbital WAT in mice. Histologically, Ucp1-positive cells with multilocular lipid droplets were abundant in retro-orbital WAT of immature mice; those cells decreased in number with age. However, Ucp1-positive adipocytes with multilocular lipid droplets emerged in retro-orbital WAT in adult mice, due to cold exposure as short as 3 h. Consistent with this observation, the expression level of Ucp1 mRNA was enhanced in tissues upon cold exposure. Furthermore, eye surface temperature remained within a physiological range during cold challenge. RT-qPCR suggested a mixed phenotype of brown and beige adipocytes in retro-orbital WAT. Transmission electron microscopic observation showed multiple lipid droplets and numerous mitochondria with high cristae density in retro-orbital WAT cells from both control and cold-exposed mice. Our results suggest that warming of the orbital cavity by browning/beiging in retro-orbital WAT is a protective mechanism against cold cataract caused by lowered lens temperature.

Related Organizations
Keywords

Cold Temperature, Aging, Mice, Adipose Tissue, Animals, Adipocytes, Beige, Cataract, Uncoupling Protein 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?