
AbstractThis mini-review describes recent work in the field of glycopolymer synthesis, with a focus on methods that have employed “click chemistry” and controlled polymerization methodology. A variety of carbohydrates with clickable groups such as azide, alkyne, and thiol moieties provide new routes to glycopolymers. Several studies use copper catalyzed azide-alkyne cycloaddition (CuAAC) reactions to synthesize glycomonomers or to incorporate carbohydrates into a clickable polymeric backbone. Alternatively, there are many thiol based click reactions which provide metal-free synthesis, which are discussed in details.
Polymers and Plastics, Glycopolymer, Glycomonomer, Organic Chemistry, Click reaction, Functional polymers, Physics and Astronomy(all), Controlled living polymerization
Polymers and Plastics, Glycopolymer, Glycomonomer, Organic Chemistry, Click reaction, Functional polymers, Physics and Astronomy(all), Controlled living polymerization
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 162 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
