Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Expert Systems with ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Expert Systems with Applications
Article . 2013 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Kernel Factory: An ensemble of kernel machines

Authors: M. BALLINGS; D. VAN DEN POEL;

Kernel Factory: An ensemble of kernel machines

Abstract

We propose an ensemble method for kernel machines. The training data is randomly split into a number of mutually exclusive partitions defined by a row and column parameter. Each partition forms an input space and is transformed by an automatically selected kernel function into a kernel matrix K. Subsequently, each K is used as training data for a base binary classifier (Random Forest). This results in a number of predictions equal to the number of partitions. A weighted average combines the predictions into one final prediction. To optimize the weights, a genetic algorithm is used. This approach has the advantage of simultaneously promoting (1) diversity, (2) accuracy, and (3) computational speed. (1) Diversity is fostered because the individual K's are based on a subset of features and observations, (2) accuracy is sought by automatic kernel selection and the genetic algorithm, and (3) computational speed is obtained because the computation of each K can be parallelized. Using five times twofold cross validation we benchmark the classification performance of Kernel Factory against Random Forest and Kernel-Induced Random Forest (KIRF). We find that Kernel Factory has significantly better performance than Kernel-Induced Random Forest. When the right kernel is selected Kernel Factory is also significantly better than Random Forest. In addition, an open-source R-software package of the algorithm (kernelFactory) is available from CRAN.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    19
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
19
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!