
AbstractWe define a logic EpCTL for reasoning about the evolution of probabilistic systems. System states correspond to probability distributions over classical states and the system evolution is modelled by probabilistic Kripke structures that capture both stochastic and non–deterministic transitions. The proposed logic is a temporal enrichment of Exogenous Probabilistic Propositional Logic (EPPL). The model-checking problem for EpCTL is analysed and the logic is compared with PCTL; the semantics of the former is defined in terms of probability distributions over sets of propositional symbols, whereas the latter is designed for reasoning about distributions over paths of possible behaviour. The intended application of the logic is as a specification formalism for properties of communication protocols, and security protocols in particular; to demonstrate this, we specify relevant security properties for a classical contract signing protocol and for the so–called quantum one–time pad.
EPPL, Kripke structure, PCTL, CTL, stochastic process, Theoretical Computer Science, Computer Science(all)
EPPL, Kripke structure, PCTL, CTL, stochastic process, Theoretical Computer Science, Computer Science(all)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
